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SUMMARY

The major challenges facing the Air Transportation System today include reducing congestion

and delays, enhancing safety, and expanding the capacity of the National Aviation System. This

report discusses aviation safety human factors and air traffic control (ATC) automation research at

NASA Ames Research Center directed toward these challenges. Research results are given in the

areas of flight deck and ATC automation, displays and warning systems, crew coordination, and

crew fatigue and jet lag. In addition, accident investigation research and an incident reporting system

that is used to guide the human factors research is discussed. A design philosophy for human-

centered automation is given, along with an evaluation of automation on advanced technology trans-

ports. Intelligent error-tolerant systems such as electronic checklists are discussed along with design

guidelines for reducing procedure errors. Implementation of the current research results can offer

significant improvements in the current Air Transportation System. Study results indicate that signif-

icant improvements in aircrew planning and decision making could be realized with the use of

display-based communications transmitted by data link. Initial studies on three-dimensional (3-D)

auditory displays indicate that these displays could improve situation awareness for both crew

members and ATC controllers. It was found that a 40-minute pre-planned rest period for long-haul

operations can offer a safety valve to mitigate the effects of sleep loss and fatigue. The data on eval-

uation of Crew Resource Management (CRM) training indicates highly significant positive changes

in appropriate flight-deck behavior and more effective use of available resources for crew members

receiving this training. Simulation evaluation of ATC automation tools for single runway operations

provided 4-6 minutes delay reduction per aircraft depending on traffic mix with significant reduction

in controller workload.

INTRODUCTION

The increase in demand for air transportation has tripled worldwide traffic since 1970, and is

expected to double again by the year 2000 (ref. 1), resulting in the need to transport as many as

650-800 million passengers in the United States in a single year. This rapid growth will place

increased stress on the already strained National Aviation System. The demand for access at major

airports serving scheduled air carriers is increasing much faster than airport capacity. Unless

improvements are made, increased congestion and more flight delays can be expected at the major

hub airports. Costs associated with congestion-related system delays already equal $5 to $6 billion

per year, because of lost time for passengers and airlines (ref. 2). Instrument operations due to

weather also are a major capacity bottleneck. The Federal Aviation Administration (FAA) is

attempting to alleviate the problems by upgrading equipment and automating some functions within

the Air Traffic Control (ATC) system. However, this is not adequate to meet the anticipated traffic

growth.

Also identified as a major national problem is the number of aviation accidents and safety-related

aviation incidents attributable to human error. In the last decade the number of near misses reported

to the NASA Aviation Safety Reporting System (ASRS) has more than doubled. A review of the

data on commercial aviation accidents since 1978 reveals that approximately 65% of commercial jet



accidents,and85%of generalaviationaccidentshavebeendirectlyattributedto humanerrorasthe
probable,or acontributing,cause(ref. 3).Thesefactors,coupledwith increasingcongestion,have
led to a growingpublic concernfor safetyof commercialair transportationin theNationalAviation
System.

Thenewgenerationof automatedaircrafthasincreasinglyusedtechnologyon theflight deckto
enhancefactorssuchassafetyof flight andeconomicperformance.Despitethesuccessof thenew
aircraft,anumberof incidentsandaccidentswereattributedto problemsof crewsoperatingauto-
matedequipmentaccordingto ASRSdataandNationalTransportationSafetyBoard(NTSB)
reports.Theincreasedrangeof thenewgenerationof long-haulaircraftwith reducedcrewsizesand
highly automatedcockpitscanbeexpectedto heightenconcernsaboutcrew fatigue,complacency,
andboredom.Informationtransferproblemswithin thecockpitandwith air traffic controlhasbeen
thecauseof numerousincidentsin flight operations.Duringperiodsof highworkloadandemer-
gencysituationspilotshavecomplainedof informationoverload.Economicpressuresandincreasing
demandfor morefrequentflightswill only serveto increasethepotentialfor operationalinefficiency
anddecreasedflight safety.Theproblemsof advancedautomation,informationtransfer,fatigue,
increasingcongestion,increasingdemand,andthelimitedcapacityof theAir TransportationSystem
presentnewchallengesto bothhumanfactorsandflight systemsresearchcommunities.

NASA initiatedanAviation Safety/AutomationProgramin fiscalyear1989to addresstheprob-
lemsof aviationsafetyandautomationof aircraftandtheATC system. This program augmented the

funding in the existing research and technology base that was directed toward safety and ATC auto-

mation. The primary goal of the Aviation Safety/Automation program is to enhance the safety of the

National Aviation System through development and integration of automation technologies for air-

craft crew and air traffic controllers. The major thrust of the program is to develop and integrate

technology that can assist, support, and monitor human performance in the aviation context and thus

reduce human error and its consequences.

This report discusses the aviation safety and ATC terminal area automation research at NASA

Ames Research Center. The aviation safety research includes accident investigation, incident report-

ing, and human factors of flight-deck automation, displays and warning systems, crew coordination,

and crew fatigue and jet lag. The research discussed in this report is complemented by research at the

NASA Langley Research Center and is closely coordinated with the FAA.

ACCIDENT INVESTIGATION AND INCIDENT REPORTING

Accident Investigation

Flight encounters with severe atmospheric disturbances are a continuing problem that must be

better understood to improve safety. In conjunction with the NTSB, researchers from Ames have

analyzed a series of atmospheric disturbances encounters involving airlines equipped with digital

flight data recorders (refs. 4 and 5). The severe atmospheric disturbances studied included high-

altitude turbulence and low-level microbursts. High-altitude turbulence is usually referred to as



"clear-air turbulence" and is associated with a strong inversion in air temperature and a strong verti-

cal shear in horizontal winds. These conditions are often in the regions of the tropopause and the

associated jet streams. The most severe encounters are frequently above mountains or thunderstorms.

Microbursts are intense downdrafts that impact the surface and cause strong outflows. They are

associated with thunderstorms, and usually occur during the summer. The atmospheric disturbances

were modeled (fig. 1) to investigate the nature of these disturbances and to study their effects on

aircraft operations. The winds of clear air turbulence can be represented by a Kelvin-Helmholtz

vortex-array model. The winds of a microburst can be represented by a multiple-vortex ring model.

a) Vortex model of high altitude turbulence

b) Vortex-ring model of low level microburst

Figure 1. Models of severe atmosphere disturbances.

The wind time histories for a given flight can be determined after the fact from digital flight

records along with ATC tracking data (fig. 2). The accelerations measured aboard the aircraft are

integrated to determine the time history of the flight path that provides the best match to the ATC

radar position data and the digital flight data recorder barometric altitude data. The aircraft data are

generally obtained from the manufacturer. The wind velocity is computed as the difference between

the vehicle inertial velocity and its velocity with respect to the airmass.
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Figure 2. Reconstruction of winds from flight and ATC records.

A comparison of modeled vertical wind perturbations with the measured winds for a severe tur-
bulence encounter over Hannibal, Missouri, April 1981, is shown in figure 3(a). Reasonably good

agreement was obtained between the model and actual winds. The vortex model provides a means of

studying the effects of these wind hazards on aircraft response and gravitational (g) load. Simula-

tions have provided information on the effects of these reconstructed vortices on the flight behavior

for three types of aircraft: a large commercial airliner, an executive jet, and a remotely piloted

vehicle.

Analysis of digital flight data from the landing approach accident at Dallas/Fort Worth in 1985

indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a

strong outflow near the ground. The results are shown in figure 4. Data from the Delta 191 accident

show that the aircraft encountered a strong microburst downflow followed by a strong outflow

accompanied by large and rapid changes in vertical wind. American 539 passed through the center of

the microburst during a go-around maneuver about 100 sec after Delta 191. Data from American 539

indicate a broad pattern of downflow in the microburst with regions of upflow at the extreme edges.

The wind pattern in the Dallas/Fort Worth microburst has been identified through the development

of a multiple-vortex ring model. A comparison of the modeled vertical wind perturbations with the

measured winds shows reasonably good agreement (fig. 3(b)).
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Figure 4. Wind vectors for two aircraft, Dallas/Fort Worth, August 1985.

For the first time, with modem digital flight data recorders, sufficient data are available to sepa-

rate atmospheric disturbance and maneuver-induced g loads. Investigations are planned in flight

simulators to better understand control problems for severe turbulence encounters and to determine

methods to reduce the maneuvering loads. These investigations will examine the use of both auto-

matic and manual control modes, and will consider the nonlinear aerodynamic effects at high posi-

tive g loads where the aircraft is in the Mach buffet region.

Incident Reporting

The ASRS, established in 1976, is managed by NASA at the request of the FAA (ref. 6). The

ASRS receives, processes, and analyzes voluntarily submitted aviation incident reports from pilots,

air traffic controllers, and others. The aviation community is fully supportive of the ASRS program;

in fact, both government and industry organizations act as integral elements in the incident-reporting

system's input and output phases (fig. 5). These reports describe both unsafe occurrences and haz-

ardous situations. The ASRS uses an epidemiological model where human errors could be consid-

ered as symptoms of a variety of underlying disorders either in the aviation system, in the human

operator, or both (fig. 6). These errors could lead to a variety of outcomes depending upon the envi-

ronment in which the error occurred. The ASRS offers incident reporters confidentiality, and the

FAA provides limited immunity to the reporter for unintentional aviation safety transgressions. In

exchange, the program receives unique safety information which can be used to remedy reported
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Figure 5. NASA Aviation Safety Reporting System.

hazards, to provide data for planning and making improvements to the National Aviation System,

and to conduct research on pressing safety problems. The ASRS's particular concern is the quality of

human performance in the aviation system.

Since its inception, the ASRS has published more than 40 research studies based on its data cov-

ering the full spectrum of aviation activity. The program has processed over 160,000 safety reports,

issued 1,400 alerting messages, and responded to 1,800 special information requests. This database

has become a major resource to guide NASA human factors research and is heavily used by the

FAA, NTSB, Department of Defense, and other government, industry, and safety organizations, both

nationally and internationally. This U.S. incident-reporting system has proven to be so effective in

improving safety and in stimulating safety awareness that it has been used as a model for similar

programs in four other countries.
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Figure 6. ASRS model of human error.

AVIATION SAFETY HUMAN FACTORS RESEARCH

NASA's aviation safety human factors program is directed at understanding and mitigating the

problem of human error in aviation. Research is directed in the area of flight-deck automation, dis-

play and warning systems, crew fatigue and jet lag, and crew coordination research.

Flight-Deck Automation

The flight-deck automation research consists of two elements: (1) human-automation interaction

and (2) intelligent error-tolerant systems. The human-automation interaction element is concerned

with the role of the human in the automated environment. Intelligent error-tolerant systems focuses

on development of cockpit systems that intrinsically tolerate human error.

Human-automation interaction- The Air Transport Association's National Plan for the

Enhancement of Safety through Human Factors (ref. 7), has identified the lack of a scientifically
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based philosophy of aircraft automation as an important shortcoming in planning for the future

aviation system. In an attempt to redress the shortcoming, Ames, in consultation with colleagues at

Langley Research Center, and Boeing and Douglas Aircraft Companies, is developing an appropriate

automation philosophy and guidelines for the design and evaluation of automated system interfaces

for pilots and controllers. This philosophy makes extensive use of examples from previous and

current aircraft automation applications and addresses, in particular, conceptual and philosophical

issues in the context of aircraft automation as it has evolved over the past 70 years. An initial report

discussing some of this philosophy is in reference 8.

Humans will continue to manage and operate the National Aviation System through the first part

of the 21st century. Therefore, the technology requirement is for automation to assist humans in

attaining increases in performance within the flight deck or ATC work station, to monitor human

performance, to detect and warn of human errors, and to assist humans in the management of contin-

gencies. We speak of such automation as being human-centered, in that its function is to assist rather

than to supplant the human. The concept of being human-centered is one in which the pilots perceive

themselves as being at the focus of control, regardless of the control modalities in use. The pilot

controls and manages the resources in the aircraft and aircraft systems to aid in situation awareness.

These resources are illustrated in figure 7.
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Figure 7. A concept of human-centered automation. (FMS = flight management system, INS =

inertial navigation system, ONS = omega navigation system, GPS = global positioning system,

VHF = very high frequency)



Thefirst principleof human-centeredautomationis thatthepilot bearstheultimateresponsibility

for the safety of a flight operation and the human operator must be in command. From this principle,

the following corollaries were developed: (1) to command effectively, the human operator must be

involved; (2) to be involved, the human operator must be informed; (3) the human operator must be

able to monitor the automated systems; (4) the automated systems must also be able to monitor the

human operation; and (5) each intelligent agent must have knowledge of the other's intent.

Because the trend has been to automate more systems, modern aircraft automation has become

extremely complex (fig. 8). The trend toward greater complexity has the potential to decrease aware-

ness with respect to the state and status of the automation and results in the pilots becoming increas-

ingly peripheral to the aircraft systems. To counteract the effects of peripheralization, human-

centered automation systems must be designed to allow for human interaction and involvement with

a system which is consistent with human intellectual abilities, skill level, and responsibility; allow

for the joint and collaborative interaction and responsibilities of flight crews, controllers, and ground

personnel; and enhance unique human capabilities. Implicit in human-centered automation is the

development of designs which (1) fully utilize and enhance the unique human capabilities of pattern

recognition, information integration, learning, and adaptation; and (2) protect the system from

I Aircraft
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Figure 8. Trend of aircraft automation, 1920-1989. (FMS = flight management system, CDU =

control data unit, VOR = very high frequency omnirange, DME = distance maneuvering equipment,

INS = inertial navigation system, ONS = omega navigation system, CADC = central air data

computer)
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humanlimitationssuchassystematichumanerrortendencies,unreliablemonitoringskills, decision-
makingbiases,andlimitationsof workingmemoryandprocessingspeed.

A recentNASA/FAA/Industryworkshopwasheldto discussthedesign,training,andprocedural
aspectsof flight-deckautomation,aswell asthecrew'sability to interactandperformeffectively
with thenewtechnology(ref.9). Severalthemeswererepeatedin theworkinggroupreport.The
participantsfelt thattheability of theflight crewto understandautomationis akeyconcept.This
includestheway it works, thesystemintent,thecontrollaws,normalversusirregularoperations,
andimplicationsof systemstatus.Theyalsoindicatedthatautomationnecessitatesclosercrew
communicationaswell ascloserinteractionin all elementsof design,trainingoperations,andATC.

A majorfield studywasperformedto investigatetheeffectsof automationon advancedtechnol-
ogy transportaircraft (ref. 10).TheBoeing757whichhasa"glasscockpit" (electroniccathoderay
tubedisplays)wasselectedasarepresentativemodernaircraft for this study.Theresultsindicated
that,in general,thepilotsexhibitedahighdegreeof enthusiasmfor theaircraftandtheir training.
However,pilots indicatedsomereservationsin theareasof safetyandworkloadreduction.As far as
safety,pilots wereconcernedthereis toomuchhead-in-the-cockpittimeandwereconcernedabout
degradationof theirmanualflying skills.With respectto workload,therewasstrongdisagreement,
but atleasthalf of therespondentsreportedconcernthatautomationincreasedworkloadduring
phasesof flight characterizedby highworkload,andautomationdecreasedworkloadduring routine
operations.

Theresultsalsoindicatedthatthehighly automatedcockpitmayrequirescrutinyfor crewcoor-
dinationandcockpit resourcemanagement,bothin theassignmentof tasks,andstandardizationof
theirperformance.Numerouspilotscomplainedthattherewasa lackof clarity on "who doeswhat,"
aproblemusuallynotpresentin well-standardizedtraditionalcockpits.Supervisionby thecaptainor
thefirst officer maybemoredifficult: atthevery least,it maybeconsiderablydifferent thanthatin
traditionalthree-pilotcockpits.In addition,thepilots wereconcernedthattheATC systemdid not
takeadvantageof theadvancednavigationandguidancecapabilitiesof theaircraft.

In summary,thefield studyhasshownthatthemodernadvancedtechnologytransportaircraft
arebeingeffectivelyandsafelyoperatedby two-pilot crews,but thatnumeroushumanfactorsprob-
lems,aswell assomeproblemsexternalto thecockpit,preventthesafestandmosteffectiveutiliza-
tionof theaircraft.

Intelligent error-tolerant systems- Research in intelligent error-tolerant systems includes

evaluations of a normal flight-deck checklist, development of touch-panel-operated electronic

checklist, and the development of a cockpit procedure monitor.

The improper use, or non-use, of the normal checklist by flight crews is often cited as the proba-

ble cause or at least a contributing factor to many aircraft accidents, including the recent Northwest

MD-80 accident at Detroit and the Delta 727 accident at Dallas/Fort Worth. A field study was

conducted to analyze the normal checklist, its functions, format, design, length, usage, and

limitations of the humans who must interact with it (ref. 11).
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It wasfoundthatthecurrentlyusedpaperchecklisthasseveraldesignweaknesses:the lackof a
pointersystem,theinability to storeskippeditems,spacelimitations,andalimited branchingand
trackingcapability.However,thestudyresultsindicatethatthis is only theoutershellof thecheck-
list problem.Therealproblemsthatemergedwerethedesignconceptsandsocialissuessurrounding
checklistusage.Checklistdesignsthatdonot"run parallel"with activitiesof extemalagentssuchas
gateagents,cargoloaders,refuelingagents,andflight attendantsmaybeaproblem.Omissionof
checklistitemssometimesoccurswhenanitemthatcouldnotbecompletedin sequenceis deferred
by thecrewto beaccomplishedlater.In addition,checklistsshouldbetightly coupledwith other
critical taskssuchastakeoff,taxiing,andlanding.Everyeffort shouldbemadeto providebuffersto
helprecoverfrom a checklisterror.

Severalchecklistphilosophiescurrentlyusedin the industrydonotaccommodatethelimitation
of thehumanoperators,leadingsomepilots to misusethemor notusethematall..Thechecklistis
highly susceptibleto productionpressures("makingschedules").Thesepressuresencouragesub-
standardperformancewhenthecrewis rushingto completethechecklist.Furthermore,underpro-
ductionpressures,checklistsaresometimesrelegatedto secondplacestatusto savetime, thereby
leadingsomepilotsto shortcutpartof, or eventheentire,procedure.It wasalsofoundthatthesocio-
technicalenvironmentin whichthepilot operateshasasubstantialeffectonchecklistperformance.
If the individualcaptainchoosesnot to usethechecklistfor any reason,noonecanforce its use.As
aresultof this field study,researchershaveproducedguidelinesfor checklistdesign,management,
andusage.

Recentfield studiesandresearchin theareaof cockpitprocedureshasshownthatoneof thedis-
advantagesof apaperchecklistis the lackof anexplicit displayof pendingandcompletedprocedu-
ral steps,aswell astheinability to switchreliablybetweenmultipleactiveprocedures.Theproblems
canbeovercomeby useof anelectronicchecklist(fig. 9).Two levelsof electronicchecklistshave
beendevelopedandarecurrentlyrunningonatouch-screendisplayin theAdvancedConceptsFlight
Simulator(ACFS)at Ames.Theyarethepointerchecklistandasensedchecklist.Thepointercheck-
list aidsthepilot in conductingthenormaloremergencyproceduresby providingfeedbackfor
accomplisheditemsaswell asintentionallyor inadvertentlyskippeditems.Thechecklistdisplay
automaticallycallsup theappropriatesub-systemdisplay.Thesystemis designedto allow thepilot
to branchfrom checklistto checklistwithout losingtrackof uncompletedchecklistsandwithout
gettinglost in theelectronicproceduremanual.A sensedchecklisthasall thecapabilityof the
pointerchecklist,but goesonestepfurther.Thesensedchecklistsystemhasthecapabilityto sense
thestateof configurationitemssuchasflapposition,gearposition,wing/engineanti-ice,etc.,
therebyprovidingredundantmonitoringandfeedbackto theflight crewon thestateof thesystem
andchecklistitems.

Full-missionLine OrientedFlight Training(LOFT) scenarioshavealsobeendevelopedto test
theeffectivenessof differentelectronicchecklistdesignsin reducingproceduralerrors.A seriesof
experimentsisbeingconductedon theACFSto evaluatetheusefulnessto thecrewof electronic
checklistsof varyingdegreesof sophisticationandintelligencefor performingnormalprocedural
tasksandcopingwith on-boardmalfunctions.
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Figure 9. Electronic checklist display in the ACFS.

Electronic checklists can be used as cockpit procedure monitors. A cockpit procedure monitor

has been developed that incorporates a model of expected pilot behavior, a key feature of error-

tolerant systems. The goal is to develop an "electronic check pilot" that can intelligently monitor

pilot activities. NASA is investigating a number of alternative techniques to track pilot activity

including (1) a rule-based script of flight phases, (2) operator function models, and (3) Bayesian
temporal reasoning.

Under a grant to Georgia Institute of Technology (refs. 12 and 13), an activity tracking system

that was originally developed for a satellite communications operator was modified to track the

action of the crew of the B-727 simulator. The objective of this system is to track pilot actions, detect

errors, determine error consequences, and provide real-time pilot feedback. The system architecture

of the script-based model is illustrated in figure 10(a). The system architecture uses aircraft state,

pilot actions, script model, aircraft model, and flight plan as input. The script-based model

(fig. 10(b)) represents the various levels of flight activities which requires pilot actions. The tech-

nology developed for this script-based cockpit procedures monitor has been used to develop the

interactive touch panel operated electronic checklist display for the ACFS.

13
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Figure 10. System architecture and script-based model of cockpit procedures monitor.

The electronic checklist has been designed to provide a graphic display of the status of checklists

and checklist items (pending, skipped, or completed). The checklist program als0 can sense the state

of many aircraft controls and systems. The checklist can thereby provide a redundant check that pro-

cedural steps have in fact been completed.

A cockpit procedure and decision aid is being developed that will monitor pilot actions, system

status, and resources for any threat to achieving critical flight functions for current and future flight

phases. If threats to critical functions are detected, the system will suggest alternative procedures for

completing the flight. The system will also provide the crew with immediate feedback on the effect

of actual or planned crew decisions on future flight phases. A prototype flight and configuration plan

monitoring system of this type is discussed in reference 14. The cockpit procedure and decision aid

will be implemented and evaluated in full-mission simulation in the ACFS.

Displays and Warning Systems

Display and warning systems research consists of flight-deck information management systems,

traffic alert collision avoidance system, and 3-D sound displays.

Information management- Today the pilot has an increasing amount of information available

from both air traffic and the aircraft systems. Also, there is an increase in the complexity of aircraft

systems due to technology improvements and advanced systems available for improved information

management. For these reasons, Ames has an ongoing research program to develop design principles

for advanced flight-deck information management systems and computer-aided design technology to

14



facilitatetheintegrationof newinformation.To attaintheprogramgoals,amultifacetedapproach
hasbegun.Thisapproachincludes(1)developmentof methodologyfor quantifyingaircrewinfor-
mationrequirementsandinformation-processingcapacity,(2) identificationof currentoperational
problemsthatcouldbeeliminatedby improvedsystemdesign,(3) developmentandevaluationof
prototypicalinformationmanagementsystems,(4)developmentof part-tasksimulationtechnology
asalow-costdesignandevaluationtool, and(5) developmentof computer-aideddesigntechnology
baseduponinformationmanagementprinciples.

A numberof effortsweresuccessfullycompletedin supportof programobjectives.Analysesof
ASRSincidentsof informationtransferfactorsrelatedto aircraftandATC communicationwere
completed(refs. 15and16)aswasacomprehensivesurveyof air carrieraircrewweatherinforma-
tion requirements.Themostcommoncommunicationproblemsin air-groundcommunicationswere
attributableto pilot misunderstandingsof ATC clearancesor afailureto rememberthemessage
causedby preoccupationwith otherduties.TheASRSincidentreportsindicatedproblemswith
ground-airinformationtransferdueto lackof information45%of thetimeandinaccurateinforma-
tion 25%of thetime. In addition,ananalysisof informationfrom frequencymonitoring(party line
data)from ASRSincidentreportswasconductedto examinetheimpactof informationtransferand
management.Partyline-relatedincidentreportsindicatedinformationtransferproblemsdueto air-
craft call signconfusion20%of thetime.

Researcheffortsincludeexaminingtheeffectivenessof conventionalversusdatalink weather
transmissions,examiningthedatalink interfaceissues,developingguidelinesfor thedesignand
implementationof digital informationtransfer,anddeterminingtheimpactof datalink uponsitua-
tionalawarenessandworkload.Theresultsof afull-missionflight simulationcomparingvoice and
display-basedcommunicationmodesin advancedtransportaircraftis discussedin reference17.The
resultsof this studyindicatedthatadisplay-basedmodeof informationtransferdoesnot resultin
significantlyincreasedaircrewworkload,but doesresultin substantiallyincreasedtime thepilot
tookto acknowledgethemessagewhencomparedto conventionalvoicetransmissions.Useraccep-
tanceof thedisplay-basedcommunicationsystemwasgenerallyhigh,replicatingthefindingsof
previousstudies.

A flight simulationstudywasconductedalongwith pilot surveysto evaluatetheeffectivenessof
ground-airtransmissionfor deliveryof ATC clearanceamendmentsandweatherinformation
(ref. 18).Resultsof thepilot opinionsurveyonworkloadassociatedwith clearanceamendmentsin
theterminalareaareshownin figure 11.Thepilots indicatedthatclearanceamendmentsin the
terminalareaalmostalwaysinducedhighworkload.The study revealed that significant improve-

ments in aircrew planning and decision making could be realized with the use of data link-

transmitted weather information. Also, part of the survey were pilot rankings of possible relay/

presentation modes for ground-generated wind shear alerts (fig. 12). The pilots preferred an elec-

tronic flight information system (EFIS) display over the other modes of communication such as ATC

voice, graphical display, alphanumeric display and Automatic Terminal Information System (ATIS).
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Figure 12. Pilot rankings of relay/presentation modes for windshear alerts.

In support of advanced communications management system development, prototype data entry

and retrieval systems were developed to provide support of digital air-ground communication. Study

results indicate graphical interfaces using clearance information transmitted by data link provide sig-

nificant enhancements in flight management systems operations. Part-task simulation results indi-

cated pilot preference for graphical presentation mode over verbal or textual mode (fig. 13). Survey

responses indicated that location and intensity of microbursts are clearly the most important infor-
mation items.
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Current and future research will examine pilot/controller communication errors in actual flight

operations. Results of these studies should provide a better understanding of the potential impact of

data link communications and provide a basis for subsequent flight-deck display design, as well as

provide guidelines for phraseology for data link communication. Finally, there is an ongoing effort

to develop a part-task simulation that would provide a realistic means of exploring issues relevant to

the evaluation of different methods of information transfer and management within the cockpit.

Traffic Alert Collision Avoidance System- The Traffic Alert and Collision Avoidance System

(TCAS) is a stand-alone system that can detect the presence of nearby transponder-equipped aircraft.

It is designed as a backup to ATC and the pilot's ability to visually sight other aircraft. As the skies

get more congested, collision avoidance is increasingly important. TCAS II is mandated by the FAA

for all large commercial transport aircraft by 1993. TCAS II provides the pilot with (1) a display of

traffic in the immediate vicinity, (2) an advisory of traffic approaching too close within 40 sec, and

(3) an advisory of how to avoid traffic approaching within 25 sec. To ensure safe separation of

aircraft, TCAS II commands a climb, or a descent, or a reduction in the rate of climb or descent.

NASA conducted three studies to determine pilots' performance in responding to advisories

given by the TCAS II (refs. 19 and 20). The cockpit displays used in the TCAS experiment are

shown in figure 14. The "climb, climb" on the figure indicates a voice command to climb when it is

necessary to maneuver to avoid a collision. In the first study, normal TCAS II operations were evalu-

ated in simulated air cartier line operations. Study results indicated that pilots were able to use TCAS

II correctly within the response times allocated by the system and that TCAS II is effective in ameli-

orating the severity of the simulated traffic conflicts. The 12 crews flying with TCAS had no
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conflicts involving separationof lessthan1000ft horizontallyand200ft vertically; 3 of 4 crews
flying without TCASdid experiencesuchconflicts.

Thesecondstudytestedpilots' responsesto proposedchangesin theavoidanceadvisories.
Resultsof thisstudyprovidedperformanceparameters,pilot reactiontimes,andaircraftaccelera-
tions, for theTCAS logic. Therecordedreactiontimessuggestthatpilotsareableto makea second
or revisedresponsewhenrequiredwithin the2sectargetedby theTCAS logic. Thesuccessratein
reachingverticalvelocity by advisorydurationis illustratedin figure 15.Thefigureshowsthesuc-
cessratefor "increaseadvisories"and"reversaladvisories."An increaseadvisoryrequiresapilot to
increasetherateof climb or descentfrom 1500ft/min to 2700ft/min. A reversaladvisoryrequires
thepilot to changefrom climb to descentor descentto climb.Thepilots wereat least80%successful
in reachingcommandedverticalspeedwhenthedurationof theresolutionadvisorywasgreaterthan
10sec.
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Figure 15. Success rate in reaching vertical velocity by advisory duration.

The third study evaluated three alternate resolution advisory displays as illustrated in figure 16.

Displays included a target red-only region on the vertical speed, a red and green region on the verti-

cal speed, and green-only on the vertical speed. The green area designates a safe range of vertical

speeds to be achieved and the red area depicts a range of vertical speeds to be avoided. The results

indicated that the red and green color format of a TCAS II resolution advisory display was more

effective than the red-only display. NASA research improved the maneuver displays, which resulted

in both speed and accuracy increases for the pilots' responses. The industry standard was changed to

reflect NASA's contribution of adding a target (green) region on the vertical speed display. Through

industry and FAA interaction, NASA (by means of a workshop) established airline/manufacturer

consensus for TCAS in the glass cockpits. NASA personnel continue to provide human factors

expertise to the FAA and airlines on an as-needed basis, e.g., serving as panelists for the TCAS

Installation and Federal Deadlines Workshop conducted by the Office of Technology Assessment of

the U.S. Congress.
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Figure 16. Three versions of the resolution advisory display.

3-D auditory displays- As with most research in information displays, current aviation displays

have emphasized visual information. However, a significant body of research has clearly demon-

strated the importance of the auditory system as an alternative or supplementary information chan-

nel. Indeed, in today's flight environment, successful operations are critically dependent on accurate

communication between air/ground personnel and among crew members. ATC controllers and crew

members are being required to work under conditions which increasingly tax their ability to manage,

interpret, and act upon information in a timely and accurate manner. The 3-D auditory displays may

provide improved situational awareness and enhanced intelligibility for a wide range of applications

for crew members and ATC controllers. These applications include aircraft warning systems, traffic

alerts, acoustic glide path and altitude deviation displays, aircrew and air-ground communications,

and ATC communications (fig. 17). NASA has initiated research in a number of these applications.

Research is under way to provide a prototype real-time acoustic display which will allow an

ATC controller to immediately, accurately, and inexpensively monitor three-dimensional

information through the use of sound. Two types of displays are being considered because of their

conceptual simplicity and the likelihood that they will provide significant benefits to current ATC

systems. One example is an ATC display in which the controller hears communications from

incoming traffic in positions which correspond to their actual location in the terminal area. In such a

display, it may be evident to the listener when aircraft are on a potential collision course if they

could be heard in their true spatial locations and their routes could be tracked over time. A second

example involves alerting systems for ATC. A non-speech sound or auditory icon, such as a complex
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Figure 17. Application of three-dimensional auditory displays.

signal with a unique temporal rhythm, could also be used as a warning of urgent situations like

potential runway incursions. Again, the signal could be spatialized to convey true directional

information and urgency could be emphasized by placing the warning close to the listener's head,

e.g., within the boundaries of his or her "personal space."

The goal in the research is to develop a spatial auditory display, which is both multipurpose and

portable, by synthetically generating localized, acoustic cues in real time for delivery through head-

phones. This involves developing the signal-processing technology required to implement the syn-

thesis technique and to validate the technique with psychophysical studies (refs. 21-25). The synthe-

sis technique, illustrated in figure 18, involves the digital generation of stimuli using head-related

transfer functions (HRTF) measured in the ear canals of individual subjects. In the real-time system,

up to four moving or static sources can be simulated in a head-stable environment by digital filtering

of arbitrary signals with the appropriate HRTFs. A reasonable approach is to use the HRTFs from a

subject whose measurements have been "behaviorally calibrated" and are thus correlated with known

perceptual ability in both free-field and headphone conditions. In a recently completed study,

16 inexperienced listeners judged the apparent spatial location of sources presented over loud-

speakers in the free-field and over headphones. The headphone stimuli were generated digitally

using HRTFs measured in the ear canals of a representative subject. For 12 of the subjects, localiza-

tion performance was quite good, with judgments for the non-individualized stimuli being nearly
identical to those in the free-field.
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An example of research on advanced acoustic displays in the cockpit environment includes

improving target acquisition time from traffic advisories by spatializing the position of an auditory

warning to correspond to the location of the target out of the window. Studies are under way on the

ACFS to determine the extent of the improvement with spatial auditory display for traffic advisories.

Other planned research involves auditory displays which allow pilots to monitor their locations

during landing, particularly during Instrument Landing System (ILS) approaches when visual cues

are degraded. Examples include an acoustic glide-path display representing deviations from the

approach slope, an acoustic display of deviations from assigned altitude, and an auditory tunnel-in-

the-sky corresponding to the computer-generated visual displays. These displays will use spatial

non-speech cues which would supplement the visual displays and verbal communications in the

current ILS approach system while avoiding additional communication clutter.

Crew Fatigue and Jet Lag

Few aircraft accident reports prior to 1980 had cited fatigue as a causative or contributing factor,

though some pilots doing night cargo and long-haul flying felt it to be extremely important. ASRS

has received confidential reports from long-haul flight crews describing how fatigue and sleep loss

have contributed to major operational errors such as altitude deviations, track deviations, landing

without clearance, landing on the incorrect runway, and improper fuel calculations. Also the safety

record for long-haul operations has been poorer than for shorter-range flying. These factors led to the

initiation of the NASA program on crew fatigue and jet lag in 1980 by congressional request. The
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program objectives are to determine the extent and impact of fatigue and circadian desynchroniza-

tion on flight crew performance and to develop countermeasures to minimize the effects.

Studies indicate that long-haul flight crews experience substantial sleep loss due to night flying

conflicting with sleep, disruption of layover sleep (jet lag), and large individual differences in adapt-

ability (refs. 26, 27 and 28). One very clear result emerged regarding the direction of flight on sleep:

sleep quality decreased more after eastward flights than after westward flights. This directional dif-

ference is highly consistent with the fact that the body's natural circadian period is longer than 24 hr.

While westward flights lengthen the day, eastward flights shorten it and hence should result in

greater circadian-induced sleep disruption. Another finding common to eastward flying airlines was

that the crew members sleep for a considerably shorter duration on the second night than they do on

the first night in the new time zone (fig. 19).
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Figure 19. Comparison of nocturnal sleep duration for crew members.

The individual factor of age was found to strongly affect sleep and sleepiness. Age was signifi-

cantly correlated with an increased number of awakenings and lower sleep efficiency. The sleepiness

data led to another finding that has important operational implications. Contrary to popular belief,

the results indicated that crew members were not able to predict when they were sleepy. The objec-

tive physiological sleepiness scores and the subjects' own subjective ratings of sleepiness just
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beforehanddid notagree(fig. 20).Thesubjectiveratings(StanfordSleepinessScaleandAnalogue
Alertnessrating)indicatehighalertnessthroughoutthedaywhile theEEG-basedMultiple Sleep
LatencyTest (MSLT) score dropped dramatically.
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Figure 20. Comparison of subjective and objective estimates of sleepiness/alertness.

The findings of these studies make it not surprising to learn that crew members sometimes fall

asleep in their seats during cruise. The incidence of this behavior on selected commercial flights is

shown in figure 21, as the percentage of opportunities for cockpit napping (i.e,, number in paren-

theses = number of subjects x number of flights). Only naps lasting at least 20 min were included.

The findings are symptomatic of the degree of sleepiness that can develop on the flight deck and

suggests that the vigilance of individual pilots may be impaired at least during cruise. However, it

should be realized that napping may have a beneficial effect on the overall vigilance level of the

crew.
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A recent study was performed to evaluate the effectiveness of a preplanned 40-min cockpit rest

period to improve crew alertness and performance in long-haul operations (ref. 29). The study

involved three-person B747 crews during regular scheduled transpacific flights. Crew members in

the Rest Group slept during 93% of possible rest opportunities. The effects of this nap on subsequent

performance and physiological alertness were examined (fig. 22). Overall, on the sustained attention/

reaction time test, the Rest Group showed significantly better and more consistent performance com-

pared to the No-Rest Group, especially at night and during later flights in the trip. The Rest Group

median reaction time was less than the No-Rest Group which is an indication of increased alertness

over the No-Rest Group. An intensive microanalysis during the last 90 min of flight, from an hour

prior to top of descent through landing, examined the occurrence of brain waves (EEG) and eye

movements (EOG) that indicate reduced physiological alertness (fig. 23). The No-Rest Group had a

significantly higher number of events (135) than the Rest Group (37). During the critical landing

phase, from top of descent through landing, the No-Rest Group had 24 events, while the Rest Group
had none.

In summary, a preplanned rest period during low workload phases of flight (i.e., cruise) appears

to act as a "safety valve" for the sleep loss and fatigue that result from the multiple time zone

changes and disturbed sleep associated with long-haul operations.
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Crew Coordination Research

In the 1970s, evidence was found in accident and incident reports that accidents and incidents

were related to problems of crew coordination rather than technical sells. At this time, two airlines

pioneered the implementation of a Crew Resource Management (CRM) program and introduced the

Line Oriented Flight Training (LOFT) concept. The CRM concept is defined as the utilization of all

available resources--information, equipment, and people--to achieve safe and efficient flight oper-

ations. The LOFT concept is defined as training that is designed to be as similar as possible to the

normal line operations. NASA held a number of workshops to develop a systematic approach to

cockpit resource management training. An example of a NASA Ames/Industry conference on

Resource Management on the Flight Deck (ref. 30), attended by training representatives from air-

lines, was held in 1986. During the 1980s, CRM and LOFT programs proliferated throughout the

industry but showed great variability in implementation. At this time, NASA began a detailed study

of factors influencing crew coordination. The conceptual framework (ref. 31) for this research is

shown in figure 24. Crew factor input variables (i.e., personality, leadership, crew composition, etc.)

and group process variables (i.e., communication patterns, problem-solving strategies) were studied

to investigate the effect on outcome variables (i.e., productivity, safety, group cohesion, satisfaction).

NASA began a series of high-fidelity, full-mission simulation experiments to address crew fac-

tors issues. Early research indicated that crew familiarity, leadership, crew composition, and team

structure significantly affected overall crew performance often by way of communication processes
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Figure 24. Conceptual framework for crew coordination research.

(refs. 32 and 33). Current crew coordination research is being directed in three major areas: (1) CRM

research, (2) automation and crew coordination, and (3) crew communication process.

The objective of the CRM research at Ames is (I) to identify and understand the factors and pro-

cesses influencing crew effectiveness, (2) to validate countermeasures to crew coordination prob-

lems, and (3) to provide assessment tools for evaluating the effectiveness of the CRM programs in

accomplishing their desired results. CRM data collection events and training events are illustrated in

figure 25. Data are collected using standardized research instruments developed as part of the proj-

ect, including a survey of crew member attitudes regarding flight deck management (cockpit man-

agement attitudes questionnaire), CRM seminar evaluation form, the Line LOFT Worksheet (a form

for expert ratings of crew performance in simulator and line settings), and the LOFT Survey (crew

member attitudes regarding LOFT). The research design involves repeated use of these instruments

to isolate changes as a result of formal CRM training.
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Figure 25. Data and training events for crew resource management research.

A recent paper discussing the effectiveness of CRM training is given in reference 34. Initial

findings on CRM impact on crew performance is shown in figure 26. The percentage of CRM-

trained crews rated as above average increased while the percent rated as below average decreased.

The data indicate that CRM training produces highly significant, positive change in personal atti-
tudes and appropriate flight-deck behavior. Also, CRM-trained crews were found to be more effec-

tive in the utilization of all resources in the cockpit (hardware, software, and crew). These findings

are the f'trst positive indication that crew coordination training is accomplishing its intended goals.

However, this must be qualified by three highly unexpected findings: (1) a "boomerang" effect

(ref. 35) in which a subgroup of individuals given CRM training showed less favorable attitudes

following training, (2) large differences are found in attitudes and performance within organizations

among crew members flying different aircraft and, also, between organizations, and (3) variations in

participant reactions to various CRM training seminars presented by the same instructor which

appear to relate to both the personalities of participants and to processes that develop within the

groups (ref. 36). These kinds of CRM findings have been very useful to the training community.
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Recently, industry concerns have focused on issues related to automation. One question being
asked is whether different levels of automation affect crew coordination and communication in dif-

ferent ways. A related question is whether training methods and materials need to be modified to

maintain effective crew performance and to assure a smooth transition from more traditional flight-

deck equipment.

To address some of these questions, NASA recently completed a full-mission simulation to

compare crew coordination and information transfer within crews in a traditional cockpit setting

(represented by a DC-9) and in an automated (MD-80 series) cockpit. This work was based on the

results of the extensive field study reported in reference 10. The objective was to identify critical

performance issues of automated cockpits (both advantages to be gained and possible limitations).

Reflecting an integrated approach of controlled experimentation in real work settings, direct compar-

ison of two contrasting cockpit environments (standard versus automated) was possible through

experimentation in simulation facilities provided by an airline's training center. Twelve crews of

active line pilots from each aircraft type were selected, flew the same route, and experienced the

same problems and environmental conditions while an in-flight observer evaluated crew perfor-

mance. Results are being analyzed to look for crew behavior patterns which correspond to differ-

ences in (1) overall crew performance, (2) aircraft type/automation level, (3) types of errors pro-

duced, (4) captain versus first officer and pilot-flying and pilot-not-flying roles, (5) normal versus

abnormal flight phases, and (6) the crew's use of a particular automation option.
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Crew coordination researchers at Ames have developed a variety of research methods associated

with both field and experimental (typically high-fidelity, full-mission simulation) designs. Both set-

tings provide opportunities to explore critical new issues and to assess whether specific variables/

conditions affect crew performance in a systematic way. In both kinds of studies, a close analysis of

crew communication processes is critical to understanding crew performance. They are the mecha-

nisms by which crew members coordinate their activities, transmit and receive information, and

solve problems. Innovative techniques for documenting group process in the field (during actual

operations) have been developed and successfully applied in studying leadership styles and team

building in air crews (refs. 37 and 38). In addition, the crew factors program has produced new

techniques for analyzing sequential and interactive speech patterns that are now being applied in

high-fidelity simulated environments (ref. 39). The communication patterns linked to performance

differences have been identified including distinctive differences in the use of question-answer and

command-acknowledgment sequences as well as differences in the relative rates of overall com-

munication and non-response. We are currently expanding one communication-based program for

analyzing group processes from a number of different perspectives representing different levels of

analysis.

The following projects are based upon observations from systematic field research and from

transcribed and coded videotape data from several full-mission flight simulations: (1) leadership and

team building, (2) communication variations and aircrew performance, (3) shared mental models and

crew decision making, and (4) resource management styles. Results from each of these areas have

been integrated into a single summary chart in figure 27, and in many cases represent converging

evidence from different research approaches. The figure gives a summary of communication pro-

cesses that correspond to more effective and less effective crew performance. The communication

process research has been very fruitful in terms of its specific recommendations for training and

there are plans for extending this methodology to the air traffic controller domain as well as other

teams with which air crews interact.
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Figure 27. Summary of communication results.

ATC TERMINAL AREA AUTOMATION RESEARCH

Objective and Approach

ATC automation research is aimed at the development and testing of controller-compatible air

traffic control automation concepts and methods, their evaluation in both simulated and real envi-

ronments, and their integration into the ATC system. The main purpose of the research is to provide

a variety of computer-aided tools that can assist controllers in achieving safe, orderly, and expedi-

tious movement of traffic within the terminal area. The criteria for designing these tools revolve

around the principle of human-centered automation. In the context of ATC this principle requires

developing tools that complement the skills of controllers without restricting their freedom to man-

age traffic manually. The aids assist the controller in solving specific ATC problems and the con-

troller decides when and how to use these tools. In addition, these automation tools must be compat-

ible with future technologies, i.e., four-dimensional (4-D) flight management systems, Microwave

Landing System (MLS), and data link.
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To ensure desirable characteristics in the human-system interface and gain controller acceptance

of automation tools, specific design guidelines were established. They included designing the auto-
mation aids to: enrich the controller's work environment, increase situational awareness, and com-

plement the controller's skills. In addition, the designer should involve controllers in the selection

and design of the automation tasks. The automation tools are defined as systems that contribute to

increased efficiency of controllers in performing their tasks. The controllers interact with these tools

by using graphics and mouse input as the primary vehicle for system-human dialogue.

The automation system needs to assist controllers in management of traffic at both the Air Route

Traffic Control Center (ARTCC) and at the Terminal Radar Control Facility (TRACON). Typically,

arrivals enter the airspace of the ARTCC that is feeding traffic to a major destination airport at least

200 n.mi. from the airport. Initially, the arrival traffic continues along established jet routes at cruise

speed and altitude. Center controllers direct the traffic to points in space called feeder gates, typically

located about 30 n.mi. from the airport at 10,000 ft above ground level. Some airports use as many

as four such gates or comer posts which approximately form a rectangle, with the airport at the

center. At the gates, the Center controllers hand the traffic over to the TRACON for final sequencing

to the runway.

ATC Automation Tools: CTAS

NASA has designed a set of automation tools to assist air traffic controllers in the efficient man-

agement of air traffic (ref. 40). The concept (fig. 28) referred to as the Center TRACON Automation

System (CTAS) consists of three principal tools which are Traffic Management Advisor (TMA),

Descent Advisor (DA), and Final Approach Spacing Tool (FAST). The automation tools are illus-

trated in figures 29, 30. and 31. TMA is designed for traffic managers in the Center and TRACON,

DA for arrival and descent sector controllers in the Center, and FAST for feeder and final approach

controllers in the TRACON environment. The relationship of the three tools is illustrated in fig-

ure 32. The functions of each element and the relationships between elements are discussed below.

The TMA coordinates traffic flow through the feeder gates and generates landing schedules that

minimize delays. The TMA includes algorithms, a graphical interface, and interactive tools for use

by the Center traffic manager or TRACON controllers. The primary algorithm is a real-time sched-

uler which generates efficient landing sequences and landing times for arrivals within about

200 n.mi. from touchdown. Four scheduling algorithms, selectable by the user, have been imple-

mented in the TMA. They are referred to as first-come-first served with and without time advance,

and position shift with and without time advance. A detailed description of these scheduling algo-

rithms is found in references 40 and 41. A unique feature of the TMA is its graphical interface that

allows the traffic manager to modify the computer-generated schedules for specific aircraft while

allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphi-

cal interface also provides convenient methods for monitoring the traffic flow and changing sched-

uling parameters during real-time operation. In essence, the scheduler is a real-time algorithm that

transforms sequences of estimated times of arrival (ETA) into reordered sequences of scheduled

times of arrival (STA) using one of several scheduling protocols selected by the traffic manager.
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Figure 29. Traffic Management Advisor.
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Figure 30. Descent Advisor.
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Figure 31. Final Approach Spacing Tool.
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Figure 32. Automation concept and hierarchy of automation tools.

The DA is a set of computer tools designed to assist the Center controllers in accurately control-

ling the arrival times of aircraft at the feeder gates according to the schedules and sequences deter-

mined by the TMA. These tools build upon the Ames-developed collection of algorithms for accu-

rately predicting and controlling aircraft trajectories (ref. 40). The DA provides fuel-efficient and

conflict-free descent clearances, adapted to aircraft type, to meet TMA-generated landing times. For

all aircraft entering an arrival sector, the DA implemented at that sector computes ETAs at its

respective arrival gate. These ETA computations take into account the airspace structure and ATC

procedures of each arrival sector. For simplicity, only two DAs are shown in figure 32, but in general

there can be four or more, at least one for each arrival gate feeding traffic into the TRACON. The

ETAs from all arrival sectors are sent as input to the TMA which uses them to calculate efficient,

conflict-free landing schedules. These STAs at the runway are then transformed by the TMA to gate

arrival times, and are sent to the DAs at the appropriate arrival areas. Upon receiving these STAs, the

DA algorithm generates cruise and descent clearances which controllers can use to keep aircraft on

schedule. For aircraft that drift off their planned time schedules, the controller can request revised

clearances that correct such time errors to the extent possible.
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TheFASTassistsTRACONcontrollersin sequencingandspacingaircraft for maximumrunway
throughput(ref. 42). It predictstimeto therunwayusingeachaircraft'sperformancecharacteristics,
currentwinds,andexpertcontrollerrulesfor choosingthemostdesirableapproachpath.FAST's
mainfunctionalelementis atrajectoryalgorithmsimilar to thatin DA, butextensivelymodifiedto
solveproblemsuniqueto TRACONoperations.Thealgorithmgeneratesaseriesof speedandhead-
ing advisories.Thesearedesignedto maintaineachaimraftonadesiredtime-controlledpathasthe
aircraftproceedsfrom thefeedergateto downwindandbaselegsandthenonto thefinal approach
course.Eachnewadvisoryattemptsto correcttimeandpositionerrorsaccumulatedsincetheprevi-
ouslyissuedadvisory.This techniquereducestheeffectsof wind modelingerrorsandof differences
in pilot response.Speedadvisoriesareappendedto thedatatagsof aircraft.Graphicaladvisories
suchasturnarcsaredrawnin front of anaircraft'sradarpositiona short time before they are due to

be issued. Advisories are also color coded if the controller display has color capability.

Evaluation of Automation Tools

The automation tools are verified in the ATC Advanced Concepts Simulation Laboratory at

Ames (fig. 33). The Laboratory is a facility for real-time simulation of advanced ATC systems which

uses controllers and airline pilots as evaluation subjects. The unique characteristics of this laboratory

are specialized software to allow rapid prototyping of ATC automation tools and a communications

network (voice and data) to the Langley Transport Systems Research Vehicle (TSRV) simulator,

Ames MVSRF simulator, and to the Denver ARTCC. The ATC facility is capable of receiving radar

data from the Denver Center so that current operations can be observed and evaluated. The interac-

tions with the various facilities are illustrated in figure 34.

Several piloted simulations were conducted on the NASA Ames B727 full-mission simulator to

evaluate the performance of the ground-based, four-dimensional (4-D) descent advisor algorithm for

controlling the arrival time of conventional (unequipped with 4-D flight management system) air-

craft. The simulator, which is FAA certified Phase II, has a 6-degree-of-freedom motion system and

a night/dusk computer-generated imaging visual system. The first study evaluated the DA perfor-

mance for a single aircraft executing straight line descents (ref. 43). A follow-on simulation evalu-

ated the performance of the 4-D DA for curved paths (ref. 44). Results indicated that the 4-D descent

advisor algorithm has significant potential for accurately controlling arrival times of aircraft not

equipped with an on-board 4-D flight management system. Simulation results showed that most

pilots executing advisor-assisted descents arrived at the feeder fix within +20 sec of their scheduled

arrival time, which is a necessary condition if a time-based traffic management system is to be max-

imally effective.

A real-time simulation was conducted to evaluate the effectiveness of the CTAS in assisting

controllers with the management of mixed traffic (4-D equipped and unequipped aircraft), and the

effect of CTAS on piloted 4-D equipped aircraft operations (ref. 45). The focus of the experiment

was to study the operational issues concerning the handling of 4-D equipped aircraft in the arrival

flow. The real-time ATC simulation facility at Ames was used to create the ATC environment and

traffic scenarios for the controller test subjects (fig. 35). The major components of the ATC simula-

tion included (1) the pseudopilot simulation which generated and controlled the air traffic, (2) the
TMA which scheduled all traffic for coordinated flow between the Center sectors and TRACON,
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Figure 34. Interactions of various facilities involved in ATC research.
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Figure 35. Research system for air traffic simulation.

and (3) the DA which provided the Center controllers with a variety of automation tools for the

sequencing of traffic. The FAST, which assists in TRACON operations, was used in an auxiliary

capacity to study the TRACON flows generated by the Center arrival activity. The Langley Research
Center (LaRC) TSRV 737 piloted simulator was used to introduce 4-D traffic into the arrival flow.

The Ames and LaRC facilities were connected via transcontinental voice and data links. It was

determined that the accommodation of a 4-D aircraft in the arrival flow requires careful coordination

of procedures between the pilot and the controller. Otherwise, conflicts may develop that add to the

controller's workload. The experience of the simulation leads to the broad conclusion that a ground-

to-air data link may be required for proper integration. The controllers were quite enthusiastic about

the 4-D capabilities demonstrated by the TSRV and they appreciated how airborne 4-D capabilities
could improve the efficiency of air traffic control.
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A simulationevaluationof FAST, in conjunction with the TMA and DA, was conducted in Jan-

uary 1990 (ref. 46). The ATC Advanced Concepts Simulation Laboratory and the B727 full-mission

simulator were used for this simulation. The objectives of the simulation were to (1) determine con-

troller performance and runway capacity effects with and without automation tools, (2) evaluate

controller acceptance of the FAST concept, (3) evaluate pilot acceptance of flying in the automation

environment, and (4) determine the accuracy of the trajectory prediction algorithms in the TRACON.

Operational controllers were fed runway capacity-limited arrival rates for Instrument Flight Rules

(IFR) conditions with a mix of heavy and large aircraft. The evaluation demonstrated that the auto-

mation achieved a decrease in inter-arrival spacing at the runway of 9 sec. This translates to an

increase in landing rate of about five aircraft per hour and corresponds to an estimated delay reduc-

tion of 4-6 minutes per aircraft depending on traffic mix. In addition, the automation tools resulted in

a significant reduction of vectoring airspace (approach intercepts 10-11 n.mi. from the runway with

automation compared to 18-20 n.mi. without automation (fig. 36). The results of an evaluation

questionnaire following the simulation showed strong controller acceptance of the automation tools.

Baseline

5 n.ml _"

Automation

J

J

Landing rate 38.8 A/C per hr Landing rate 43.4 A/C per hr

Increase of 4,6 aircraft/hour using integrated ATC automation aids

Figure 36. Airspace utilization with and without automation aids.

A summary of payoffs from CTAS is illustrated in figure 37 for single-runway IFR operations.

The simulation was performed for 1 1/2 hr traffic rush with a traffic mix of 50% heavy and 50%

large aircraft. For these conditions, average delay reduction per aircraft was 2 minutes for TMA and

DA combined and 6 minutes when FAST was included. The average fuel savings per aircraft was

450 lb for TMA and DA combined and 1050 lb when FAST was included. In addition, all three

simulation tools contributed to a significant reduction in controller workload.
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600
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*Single runway, IFR; A/C mix: 50% Heavy, 50% Large; 1-1/2 hour traffic rush

Figure 37. Payoffs from automation tools.

The FAA is considering the implementation of the automation concepts at one or two FAA-

selected demonstration sites. CTAS software and Sun workstations have recently been installed at

the FAA Technical Center and FAA contractor labs. Further research will adapt CTAS to operate

with MLS and data link. Field evaluations could be conducted first for single-runway operations fol-

lowed by multi-runway operations. Field evaluations would allow refinement of the automation con-

cepts before committing to a national implementation. However, preparations for national implemen-

tation could proceed simultaneously with demonstration implementation. The initial phase would

include installing a stand-alone Traffic Management (TM) work station at selected Center and

TRACON sites. This would be followed by an integration of the CTAS elements (TM, DA, FAST)

at these sites. Finally, national implementation of the automation concepts could be performed if

warranted by results of field tests.

SUMMARY OF RESULTS

This report discusses aviation safety, and ATC automation research directed at the challenges of

reducing congestion and delays, enhancing safety, and expanding capacity of the National Aviation

System. Aviation safety research results are given in areas of incident reporting, accident investiga-

tion, and human factors of flight-deck automation, displays and warning systems, crew coordination,

and crew fatigue and jet lag. Aviation safety human factors research is directed at understanding and

mitigating the problem of human error in aviation. ATC automation research is aimed at the devel-

opment and testing of controller-compatible air traffic control automation concepts and methods,

their evaluation in both simulated and real environments, and their integration into the ATC system.
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Theprincipal resultsareasfollows:

1. TheNASA Aviation SafetyReportingSystemhasbecomeamajorresourceto guidehuman
factorsresearchandhasbeeneffectivein stimulatingsafetyawareness.Thesystemhasresultedin
numeroussafetyadvisories,hasprovidedquick responseto FederalAviationAdministrationand
NationalTransportationSafetyBoardquestions,andhaspublishednumerousresearchstudies.

2. Analysisof atmosphericdisturbancesusingdigital flight datarecordersfrom accidentshas
ledto anunderstandingof thedisturbancecharacteristics,andaccuratemodelswhich arebeingused
to improveaircraftcountermeasuresto atmosphericdisturbances.

3. Designphilosophyfor human-centeredautomationhasbeendevelopedandevaluationsof
automationin advancedtechnologytransportssuggestswaysto optimizethehumanperformancein
theautomatedenvironment.Thefirst principleof human-centeredautomationis thatthepilot bears
theultimateresponsibilityfor thesafetyof a flight operationandthehumanoperatormustbe in
command.Theresultsindicatedthatthehighlyautomatedcockpitmayrequireadditionalscrutiny
for assignmentof tasksandstandardizationof crewmemberperformance.

4. Display-basedcommunicationssuchaselectronicchecklist, TCAS II, data link, and 3-D

auditory displays could provide significant improvements in aircrew situation awareness and

decision making. For example, study results indicate graphical interfaces using clearance informa-

tion transmitted by data link provide significant enhancements in flight management systems

operations.

5. Crew Resource Management (CRM) training produced highly significant positive change in

personal attitudes and appropriate flight-deck behavior and more effective utilization of available

resources. However, a subgroup of individuals given CRM training shows less favorable attitudes

following training, large differences are found in attitudes and performance within the organizations,

and variations in performance may be related to the personalities of the participants.

6. Studies indicate that long-haul flight crews experience substantial sleep loss due to night fly-

ing conflicting with sleep, disruption of layover sleep (jet lag), and large individual differences in

adaptability. Results indicated that crew members are not able to predict when they are sleepy. A

40-minute preplanned rest period for long-haul operations can offer a safety valve to mitigate the

effects of sleep loss and fatigue.

7. An integrated set of automation tools has been designed to assist air traffic controllers in effi-

cient management of air traffic. The tools are Traffic Management Advisor, Descent Advisor, and

Final Approaching Spacing Tool. Simulation evaluation of these tools for single runway operations

provided 4-6 minutes delay reduction per aircraft depending on traffic mix with significant
reductions in controller workload.
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